# Can Large Vision-Language Models Correct Semantic UNIVERSITY OF VECTOR INSTITUTE Grounding Errors By Themselves? / Yes\*, \*come to our poster!

<u>Yuan-Hong Liao<sup>1</sup></u>, Rafid Mahmood<sup>2,3</sup>, Sanja Fidler<sup>1,2</sup>, David Acuna<sup>2</sup>

### Can LLMs Self-Correct w/o fine-tuning?

#### Prior works say,

"In the context of reasoning, our research indicates that LLMs struggle to (instrinsically) self- correct their responses without external feedback, and at times, their performance even degrades after self-correction.", Huang et al., ICLR 2024 "There is still no consensus on the question of when LLMs can correct their own mistakes, as recent studies also report negative results.", Kamoi et al., EMNLP 2024

### **Our Research Questions**: Can VLMs Self-Correct? If so, under what context?

## Self-correction := VLMs receive feedback + VLMs provide feedback

### Task: Semantic grounding





#### Our Idea:

- Agentic: Use VLMs themselves as verifiers.
- Simplicity -> Reliable feedback: Verification is **easier** than generation
- Performances: Achieve test-time scaling! (see our results 🚀)
- Approach: Agentic, Training-free - Task: Semantic grounding
- VLMs: Open-source VLMs, GPT-4V, and GPT-40



VLM

Verification

VLM

Textual

feedback

### University of Toronto & Vector Institute, <sup>2</sup> NVIDIA, <sup>3</sup> University of Ottawa





Predictions

+10%LLaVA-1.5 ViP-LLaVA CogVLM

| tion          | 35.86 | 35.86 | 15.98 |
|---------------|-------|-------|-------|
| Feedback      | 41.04 | 40.36 | 16.25 |
| abel Feedback | 94.8  | 74.99 | 77.04 |
|               |       |       |       |

#### How to give feedback? Visual markers 🔘 works the best

| Yes        | Visual marks  | 45.38     | 45.21     | 19.46  |
|------------|---------------|-----------|-----------|--------|
| Yes        | SoM           | 42.41     | 44.53     | 18.64  |
| Yes        | No            | 43.3      | 42        | 18.25  |
| No         | No            | 41.04     | 40.36     | 16.25  |
| No         | No            | 35.86     | 35.86     | 15.98  |
| o-shot CoT | Visual Prompt | LLaVA-1.5 | ViP-LLaVA | CogVLM |

How to provide binary feedback? All better than intrinsic SC. Best prompts depends on VLM.

|   | Visual prompt           | LLaVA-1.5 | ViP-LLaVA | CogVLM |
|---|-------------------------|-----------|-----------|--------|
|   | N/A                     | 51.12     | 48.19     | 21.87  |
|   | Visual marks            | 56.16     | 60.47     | 39.16  |
| 1 | RoI crop                | 61.71     | 58.18     | 40.68  |
|   | Visual marks + RoI crop | 61.14     | 59.6      | 39.79  |



Key results - Test-time scaling: Trade performances with #tokens - Better VLMs, better gains: Gains of GPT-40 > Gains of GPT-4V

#### Interested in System-2 thinking in VLMs?

| Ch | eck our | re  |
|----|---------|-----|
| 1. | EM      | N   |
|    | spatial | re  |
|    | trainin | g   |
| 2. | arX     | iv' |
|    | traces  | fc  |
|    | svnthe  | >+i |

### Main Results

related papers: LP'24: Enhancing quantitative reasoning with no extra training. -free, spatial-reasoning 25: Synthesizing System-2 reasoning or System-1 Perception

synthetic-data-generation, cognitive-behaviors



